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Abstract 

It is shown that a density-matrix formalism may be 
used to analyse various aspects of coherence in high- 
energy electron diffraction theory. This approach is 
demonstrated by two examples: an analysis of the 
coherence between two Bloch waves generated by 
diffuse scattering as a function of crystal thickness 
(the dependent-to-independent Bloch-wave 'transi- 
tion') and an analysis of the coherence between elec- 
trons which are diffusely scattered in different direc- 
tions and their contribution to high-resolution images. 

I. Introduction 

Using density-matrix theory one can fully describe a 
quantum or statistical system even if one cannot con- 
struct the exact wave function for the system (e.g. 
Blum, 1981). To quote Ziman (1969), 'we cannot learn 
more than is given by the density matrix; it is all we 
know and all we need to know about the "state" of 
the system'. One important feature of the density 
matrix is that it contains information about the corre- 
lation or coherence between the states of a quantum 
system; this is manifested in the off-diagonal elements 
of the relevant density matrix. The effects of interac- 
tions on the system are described by the Liouville 
equation which governs the evolution of the density 
matrix. Physical observables are then readily found 
by operating on the resulting matrix. 

There are many different kinds of scattering experi- 
ments where a density-matrix description provides a 
convenient framework in which to describe the coher- 
ence among the states involved in the scattering. These 
include photon (e.g. Loudon, 1983), electron (e.g. 
Blum, 1981) and neutron (e.g. Balcar & Lovesey, 
1989) scattering. The question of coherence arises in 
several contexts in high-energy electron diffraction 
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theory. One obvious case is in high-resolution imag- 
ing, where the coherently diffracted beams are recon- 
structed (albeit with the effects of lens aberrations) 
to form an image. A more difficult question concerns 
the role of diffusely scattered electrons in high-resol- 
ution imaging (Cowley, 1988). Do these simply pro- 
vide a uniform background, or do they also contribute 
to form a 'background'  lattice image? The answer 
must lie in the degree of coherence between electrons 
which have been diffusely scattered to different points 
in the diffraction plane. A second area where coher- 
ence has been widely discussed is in the detailed 
mechanism of inelastic and diffuse scattering pro- 
cesses. A number of questions arise here, such as 
whether diffusely and inelastically scattered electrons 
preserve diffraction image contrast (e.g. Howie, 1963; 
Rez, Humphreys & Whelan, 1977) and whether 
dependent or independent Bloch-wave models pro- 
vide the most appropriate description (e.g. Cherns, 
Howie & Jacobs, 1973; Wright & Bird, 1989, and 
references therein). There has been some confusion 
about what exactly is meant by coherence in this case: 
what precisely is coherent (or otherwise) with what? 
Our aim in this paper is to show that a density-matrix 
approach provides a unifying description which 
encompasses all these areas where coherence is the 
issue. The use of density matrices is not new in diffrac- 
tion and channelling theory. Rez (1977) and Dudarev 
& Ryazanov (1988) set up a formalism to analyse 
multiple elastic and inelastic scattering but they do 
not attempt to analyse detailed questions of coher- 
ence. Kagan & Kononets (1973, 1974) discuss the use 
of density matrices in the theory of particle channel- 
ling and analyse the damping of the off-diagonal 
elements of the matrix (see below) due to inelastic 
scattering. However, they do not discuss aspects of 
the theory which are specific to high-energy electron 
scattering. The results we derive are not new and can 
be found without density-matrix theory. Neverthe- 
less, our analysis shows how correlation and 
coherence can be discussed in a rigorous 
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216 A DENSITY-MATRIX APPROACH TO COHERENCE 

quantum-mechanical theory, leading to a better 
understanding of how different forms of coherence 
are related to each other. 

In § 2 an outline of density-matrix theory is presen- 
ted which sets up the formal framework and gives 
the basic results which can be used in any particular 
case. We concentrate on thermal diffuse scattering 
(TDS) in crystals, and in §§ 3 and 4 discuss two 
examples of coherency in TDS. § 3 concerns the 
coherence between Bloch waves generated by diffuse 
scattering events which is observed in the form of 
subsidiary fringes on Kikuchi bands which disappear 
with increasing crystal thickness. This is an example 
of the dependent-to-independent Bloch-wave 'transi- 
tion' which is observed in many cases of inelastic 
scattering (Wright & Bird, 1989). In § 4 we discuss 
the contribution of diffusely scattered electrons to 
high-resolution images. The analysis shows that, 
regardless of dynamical diffraction effects, any two 
points in the diffraction plane which are separated 
by a reciprocal-lattice vector will be coherent with 
one another and are therefore capable of giving rise 
to lattice fringes. Concluding remarks are made 
in§5 .  

2. Basics of density-matrix theory 

There are several books which give a thorough exposi- 
tion of density-matrix theory, for example that by 
Blum (1981). Here, we give a brief outline to introduce 
the notation that will be used later. Consider a collec- 
tion of states {I 0n)}, not necessarily orthogonal to one 
another. W, is the probability that the system is in 
the state 10n). The density matrix is defined by 

p = E  Wnl~On)(~°l • (1) 
n 

We assume that each state 10.) can be expanded in 
terms of an orthonormal set of basis states {1~o,.)} 

I~O.) = E  a ~,] q~,,,), (2) 
m 

in which case the density matrix becomes 

W,,a,,,,a ., [ ~om,)(q~.,[ (3) P =  y~ . n. 
r l ,  tTl ,  m '  

and its individual elements in the {[q~m)} representa- 
tion are 

pm,~ =(~,lpl~m)=E w.a" . °* ,,,_ ,, . (4) 
n 

The diagonal elements, p,,,m, of p give the probability 
of finding the system in state [q~,,), while the off- 
diagonal elements, p,,,,m, represent the degree of cor- 
relation between basis states [q~,,) and Iq~,,,). Physical 
observables are described in terms of the expectation 

A 

value of an operator, O, averaged appropriately over 
the system. For the mixture of states that make up 

the system, 

O = Z  Wo(O. I610.) 
n 

_ rl n : ~  - 2 W, ar,,,a,,, (q~ml0lq~m') 
n m m  ' 

= Z (~°m,lpl~m)(~°.~lOl~m,)=tr(pO), 
r a m '  

(5) 

where tr represents the trace of the matrix product. 
In this way the value of any physical quantity can be 
extracted from the density matrix. 

The wave function of the system varies with time 
according to the time-dependent SchrSdinger equa- 
tion (TDSE) 

ih[olq,(t))/Ot]= H(t)lO(t)) .  (6) 

From this one can derive the Liouville equation which 
governs the evolution of the density matrix (e.g. Blum, 
1981) 

ih[op( t)/Ot] = [ H ( t), p( t)], (7) 

where [ ,  ] is the commutator. Let the Hamiltonian 
be separated as 

H ( t ) =  H0+ V(t),  (8) 

where the eigenvalues, E., and eigenvectors, ]q~.), of 
Ho are known. In terms of the {[~o.)} states the 
Liouville equation becomes 

ih(Op,~,,,,/Ot)=(E,,,,-E,,,)pm,,,, 

+E (V,,,,.p,,,~-p,,,,,,V,,.,,), (9) 
t l  

where V.,.=(q~.]VI~,.). This can be transformed 
using 

p , , , , , .=~ . , , . , e xp[ - i t (Em, -Em) /h]  (10) 

to give 

with 

ih(O~,,,,,./Ot)=~ ( V..,./~.m - /~, . , .  V.,~) (11) 
r /  

~',,,.= V, , , , ,exp[i t (E, , -E, , , ) /h] .  (12) 

This is the form we will use in subsequent calcula- 
tions. The division between the known Hamiltonian 
H0 and the perturbation V is chosen according to the 
problem in hand. 

We use an iterative method to solve (11), similar 
to a perturbation expansion in conventional quantum 
mechanics. V is rewritten as A V and the density 
matrix is expressed as a power series in A 

t~ = t~(°) + Ate(') + A 2t~(2~ + . . . .  (13) 

This is substituted into (11) and powers of A are 
equated. We obtain 

ih(O~(l)/Ot)=V~(°l-~(°~V, (14a) 

ih(Ofi(2)/Ot)= Vfit"-fi( ')¢¢, (14b) 
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and so on for the higher p("). In (14), ~' is the matrix 
of the 17"n,. and p(O)is the initial density matrix at 
t=0 .  Finally, we set h = 1 in (13). In this way the 
density matrix is expanded essentially as a Born 
series, with each term including a higher power of 
the perturbing potential, V. 

In both examples to be discussed later there are 
three basis states (q~o, ~o~, ~P2) and p,,, is therefore a 
3 x 3 matrix. In both cases the initial conditions give 
t~(o) 1 with all other elements of fi(o) being zero. In O 0  ~ , 

this case it is straightforward to integrate (14a) and 
(14b) and to second order in V the elements of 
which refer to states q~ and q~2 become 

x[!d/2 ol, t2 ] 
x[!d/2 o2 t2 ] 

(15) 

The reason for singling out these elements will be 
discussed later. In any analysis of scattering the basis 
states will correspond to various scattered waves and 
V will represent a scattering potential. It follows that 
/;~ and f~22 basically give the 'intensities' of states ~o~ 
and ~02, while t~2 and /~2, describe the coherence 
between ~o, and ~o2. It is important to realize that 
these second-order expressions refer to single scatter- 
ing in the perturbing potential V. The reason is that 
p is constructed from pairs of amplitudes and for 
scattering to occur both parts must change. In this 
paper we consider only the single-scattering 
expressions given by (15) and so we are limited to 
crystal thicknesses smaller than the relevant scattering 
lengths. However, the same formalism can in prin- 
ciple be used to analyse multiple scattering in V; this 
is done by including higher-order iterations of (13) 
and (14). 

How are these results applied to high-energy elec- 
tron diffraction? In principle, of course, electron 
diffraction is governed by the Schr6dinger equation 
and so all the above analysis applies. However, in 
this paper we concentrate on the case of thermal 
diffuse scattering in which any energy loss or gain is 
not resolved and so, in effect, there is no energy 
transferred between the fast electron and the crystal. 
In this case, each fast electron 'sees' an instantaneous 
frozen arrangement of atoms and the scattering from 
these different potentials are averaged in the 
appropriate way at the end of the calculation (e.g. 
Dederichs, 1972). As we shall see, the question of 
coherence arises when these thermal averages are 
made. When analysing TDS, therefore, the true time 

dependence of the Schr6dinger equation vanishes, 
and we may use the standard approach to elastic 
diffraction theory [e.g. Bird (1989), whose notation 
we follow]. In the forward-scattering approximation, 
the fast-electron wavefunction, q~(r), is governed by 
the equation 

[ - V ~ +  U(r)]~P(r)=Zik(Oqg/Oz). (16) 

Here, k is the fast-electron wavevector, U(r) rep- 
resents the (instantaneous) crystal potential felt by 
the electrons (it is 2 m / h  2 times the actual potential, 
where m is the relativistic electron mass) and V~ acts 
only on the transverse component of r. We use the 
convention that any vector v (in either real or 
reciprocal space) is separated into transverse and z 
components as v - (V,v~) .  The three-dimensional 
position vector r then becomes (R, z). The crystal 
surfaces lie in the planes z = 0 and z = t (where t is 
the crystal thickness) and the fast electrons are 
incident close to the z axis. The relationship with the 
above density-matrix theory emerges when we 
observe that (16) has the same form as the Schr6din- 
ger equation (6), with the correspondence 

r-~R, t-~z, h(O/Ot)~2k(O/Oz). (17) 

It follows that the depth through the crystal, z, takes. 
the place of time in the TDSE, and the three spatial 
dimensions of the TDSE have been replaced by the 
planar coordinate, R. By analogy with (11), the 
Liouville equation in high-energy electron diffraction 
then becomes 

2ik(O~,,,m/Oz)=~ (6U,, , ,~, , , ,-~, , , ,6U,~) (18) 
n 

with 

and 

3U,,, = 6U,,,, exp [ iz( s, - s,,)/ 2k ] (19a) 

Here, 6U is the part of the potential taken to be the 
perturbation, and q~,,, and sm are the eigenvectors and 
eigenvalues respectively of the unperturbed Hamil- 
tonian V~+ U0(R). It is assumed that Uo represents 
some kind of average potential which is not z depen- 
dent and is not affected by thermal averaging. Any 
thermal fluctuations will be included in the perturba- 
tion 6U. 

The solution of (18) and the extraction of physical 
observables proceeds in much the same way as 
described above. There is one significant difference, 
however, which concerns the thermal averages 
implicit in our analysis of TDS. In effect, we want 
the thermal average of p (which we write as (p)) 
rather than p itself. Each electron passing through 
the instantaneously distorted crystal suffers only elas- 
tic scattering. Of interest are the properties built up 

~u.m =<~.l~Ul~,.> 
= j dR ~o*(R) 6 U(R, z) q:,., (R). (19b) 
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by the passage of many electrons. It follows from (5) 
that (p) must be the important quantity because the 
average of any observable is (tr (pO)) and, provided 
O itself does not depend on the thermal fluctuations, 
this reduces to tr ((p)O). In practice (p) is found by 
averaging (13) term by term and so, for example, the 
second-order results (15) become 

4k2(pl2(Z))=([!dZl~lo(Zl)l[!dz2~Uo2(Z2)]), 
(20) 

4k2(fi21(z))= <[! dz, ffO2o(Zl)][! dz2 ffOol(z2)]>, 

4k2(P22(z))=<[! dzx ~-U2o(Z,)][! dz26-Uo2(Z2)]> • 
It is important to note that we cannot use (18) to 
obtain an equation for (p)directly because on the 
right-hand side both fi and 6U depend on the instan- 
taneous configuration and we cannot split the com- 
bined average, (fi6U). 

To summarize, (18) represents the basic equation 
,of our theory. The second-order solutions (which, as 
discussed above, correspond to single thermal diffuse 
scattering) for the relevant elements of the density 
matrix are given by (20). Physical observables are 
calculated from (p) using (5) with the appropriate 
operator O. 

3. Coherence between diffusely scattered Bloch waves 

The first example of the use of density-matrix theory 
concerns the coherence between the electron waves 
which contribute to thermal diffuse scattering in a 
particular direction in the diffraction pattern. The 
scattered distribution is observed in the form of a 
Kikuchi pattern and the question of coherence arises 
in the visibility of the subsidiary fringes which sur- 
round Kikuchi bands in relatively thin crystals 
(Wright & Bird, 1989, and references therein). We 
shall take the simplest case of a single plane wave 
entering the crystal and being diffusely scattered into 
a direction where only two Bloch waves are sig- 
nificantly excited. 

The full instantaneous scattering potential, U(r), 
is divided into its thermal average, (U(r)), and the 
fluctuation, 6U(r), so 

U ( r ) = ( U ( r ) ) +  6U(r). (21) 

The unperturbed Hamiltonian is 

Ho = - V 2 +  Uo(R), (22) 

where the two-dimensional potential Uo(R) has 
replaced (U), that is, we have made the standard 
projection approximation of high-energy electron 

diffraction theory (e.g. Bird, 1989). The eigenstates, 
~p,(R), with 'energy' s, form the basis of our density- 
matrix representation. Three states are used to 
describe the incoming and outgoing waves. We 
assume for simplicity that the incident plane wave, 
exp ( iK.  R), is undiffracted by the average potential. 
It is then scattered by the fluctuating potential into 
a direction, K', where two Bloch waves of Uo are 
excited. The three states are then 

~#o = exp ( iK.  R), 

qh=exp(iK"R)[C(o')+r-'C1)exp( -R)], (23) 

¢#2 = exp (iK'- R)[C(o2) + ,--cr~2) exp (iG. R)], 

with eigenvalues So( = K2), sl(K') and sz(K'). G is the 
diffracting reciprocal-lattice vector of the two-beam 
geometry. Explicit expressions for the Bloch-wave 
coefficients r-,c1,2) and eigenvalues can be found in '~-" 0,G 
two-beam theory (e.g. Hirsch, Howie, Nicholson, 
Pashley & Whelan, 1977; Bird & Wright, 1989), but 
we are not interested in those details here. 

The observable we wish to calculate is the intensity 
scattered in the K' direction. This is extracted by 
multiplying p by an observable matrix, 0K,, and tak- A 
ing the trace (5). The OK, operator simply projects 
out the exp (iK' • R) part of the state it operates on, 
and so 

(i 0 0 ( ~ K , =  P ( l ) *  t'~(1) t-- ,( l) ,  r ( 2 ) /  • --o "--o '--o '--o | .  (24) 

"-'0 ~-'0 ~--0 ~--0 / 

The intensity scattered into the K' direction from a 
crystal of thickness t then becomes 

A 
IK,= (tr (pOK,)) 

= Y. 2 (fio(t))C~J)*C~ i) exp[-it(si-%)/2k]. 
i=1.2s=1.2 (25) 

It follows that only four elements of the density matrix 
control this intensity, and the second-order 
expressions for these are given by (20). 

The problem now reduces to one of calculating the 
density-matrix elements of (20). These are evaluated 
in the Appendix, using the Einstein approximation 
for the atomic vibrations. By combining (20), (23), 
(25), (A9) and (A10) one can show that IK, reduces 
(as it must) to the standard expression for the TDS 
intensity in single-scattering theory (e.g. Bird & 
Wright, 1989, and references therein). However, a 
re-derivation of these results is not the point of our 
analysis. The density-matrix formalism also enables 
us to discuss the correlation between the states in- 
volved in the scattering, in this case the coherence of 
Bloch waves ~ and ~o2, which is reflected in the 
relative sizes of the diagonal and off-diagonal ele- 
ments of p. In turn, these are essentially determined 
by the magnitude of the thickness integral term (A10). 
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For the diagonal elements p~l and P22 the (qlz--q2z) 
factor is zero, while for PI2 and P21 it has magnitude 
I [s l (K ' ) -s2(K' ) ] /2k  I. Only Pl2 and P21 are therefore 
thickness dependent and the coherence they represent 
between Bloch waves 1 and 2 is manifested in the 
Kikuchi-band fringes discussed by Wright & Bird 
(1989). As t increases, however, the off-diagonal com- 
ponents reduce in size relative to the diagonal ele- 
ments which indicates that the coherence between 
Bloch waves 1 and 2 is gradually lost. Wright & Bird 
(1989) showed how this leads to the visibility of the 
Kikuchi band fringes decreasing with increasing 
thickness. The physical origin of the coherence loss 
is clear from (A9) and (A10). It arises from the sum 
(integral) over the crystal thickness, which corres- 
ponds physically to a sum over different sources for 
the diffusely scattered waves. If there were only one 
source, the waves generated from it would be perfectly 
coherent [i.e. the limit as t goes to zero in (A10)]. 
However, the waves generated by a number of sources 
spread throughout the crystal thickness steadily 
become incoherent with one another. This is 
analogous to the situation in optics where a point 
monochromatic source produces coherent light, but 
the coherence volume is reduced as the source size 
increases. In that case, the coherence loss is observed, 
for example, as a reduction of fringe visibility in a 
Young's slits experiment. 

The loss of coherence between Bloch waves gener- 
ated throughout the finite thickness of a crystal is a 
common feature of many diffuse and inelastic scatter- 
ing experiments, and is often referred to as a 'transi- 
tion' between dependent (i.e. coherent) and indepen- 
dent (incoherent) Bloch waves (Wright & Bird, 1989, 
and references therein). It can be seen that the density- 
matrix formalism provides a rigorous framework in 
which to analyse the degree of coherence which exists. 
Although we have discussed only single scattering 
here it is clear that higher-order iterations of (14) 
could in principle be used to analyse multiple diffuse 
scattering and the.coherence of the waves involved 
would still be manifested in the relative sizes of the 
diagonal and off-diagonal elements of p. 

4. Coherence of electrons diffusely scattered in 
different directions 

Our first example concerned the coherence between 
two states of an electron travelling in a given direction 
in a crystal. We now address the question of whether 
electrons travelling in different directions after being 
diffusely scattered are coherent with one another. The 
significance of this arises in the context of high- 
resolution imaging and the extent to which the 
diffusely scattered electrons contribute to a lattice 
image (Cowley, 1988). Again, we find that the density- 
matrix formalism developed in § 2 is directly appli- 
cable here. 

To keep the analysis as simple as possible we ignore 
all diffraction on the incoming and outgoing waves, 
in which case the basis states become plane waves. 
There are again three states: 

~Po = exp (iKo. R), 

q~i = exp (iK1 • R), 

q~2 = exp (iK2 • R), 

So = Kg, 

sl = K~, 

s2 = g~ ,  

(26) 

where Ko, K1 and K2 are the transverse wavevectors 
of the incoming wave and two outgoing waves respec- 
tively. The diffuse scattering potential will again be 
taken to be the 6U of (21), so all the analysis in § 2 
and the Appendix still applies. For example, the 
density-matrix elements of (20) become 

Pij : (4k2) -! u(ql)u*(q2)S(q,, -q2) 

x ~ exp [ i (q2 -q , )  • 1] (27) 

where the relevant values of ql and q2 are 

for Pl, : 

for /312 : 

for P21 : 

f o r  /922 : 

q, = [ K I -  Ko, ( K ~ -  K ~)/2k], 

q 2 :  [K1-  Ko, ( K ~ -  K~)/2k]; 

q, = [K I - -  K o ,  (K~ - K 2)/2k], 

q2 = [Kz-  Ko, (K 2 -  KZ~)/2k]; 

q, = [K2-Ko,  (K 2 -  K~)/2k], 

q2 = [ K , -  Ko, ( K ~ -  K ~)/2k]; 

q, = [ K 2 - K o ,  (K 2-  K2~)/2k], 

q2= [K2-  Ko, ( K ~ -  K 2)/2k]. 

(28a) 

(28b) 

(28c) 

(28d) 

X COS [(K 1 -K2) "  R + 0], (29) 

where 0 is the phase of (A~A*) and ( ) again indicates 
that a thermal average has been taken. Equation (29) 

If we are just interested in the intensity scattered into 
KI and K2 then only pl, and p22 are relevant and, as 
expected, we recover the standard kinematic results 
for the TDS intensity (e.g. Cowley, 1981 ). The correla- 
tion between the scattered waves is carried by p12 
and p2~. 

To be specific we consider forming an image from 
just the K1 and Kz waves, which could be realized by 
placing a pair of small apertures at the appropriate 
points in the diffraction plane. If, at the exit surface 
of the crystal, these have amplitudes A1 and A2 
respectively, the image intensity becomes 

I (R) = (]al exp (iKI" R) + A2 exp (iK2" R)[ 2) 

=([al[  2) + ( [a2[  2) + 2(]a, a*[) 



220 A DENSITY-MATRIX APPROACH TO COHERENCE 

shows that fringes are formed with period 27r/[K1- 
K2[; the phase 0 is an unimportant origin shift. The 
amplitude combinations which appear in (29) are just 
the elements of the averaged density matrix [see (4)] 
and the visibility of the fringes is therefore given by 

V = (max - min) / (max + min) 

= 21(p12)[/((p, !) + (p22)). (30) 

The fringe visibility is therefore directly controlled 
by the size of the off-diagonal terms of the density 
matrix. 

As in §3 the relative size of the diagonal and 
off-diagonal terms is controlled by the lattice sums 
in (27). We first note that Q1 and Q2 can differ only 
by a G vector, so no fringes will be observed unless 
K1 and K2 are separated by a G vector. Assuming this 
is the case, we write K2 = K, + G, in which the contri- 
bution from (A10) to the visibility becomes 

V - s i n  [(2K1 • G+G2)t/2k] 

X [ ( 2 K  1 • G +G2)t/2k] -' (31) 

The visibility therefore varies considerably, depend- 
ing both on the thickness and on the positions of the 
two scattered waves in the diffraction plane. Interest- 
ingly, (31) shows that waves on either side of the G 
Kikuchi band (so 2Kl • G + G  2=0)  are perfectly 
coherent. This result must break down in dynamical 
theory because these orientations correspond exactly 
to the Bragg condition for the outgoing waves. 
However, there does seem to be a considerable degree 
of coherence between the diffusely scattered waves. 
It must be emphasized that this is not related to 
diffraction of the outgoing waves - it arises purely 
from consideration of the source of the scattered 
waves and the extent to which the source is localized 
or extended. Although these results indicate that the 
TDS background could contribute to a lattice image, 
it is clearly necessary to extend the work here to 
include the interactions between all the scattered 
waves and to include the effects of dynamical diffrac- 
tion (Bird & Wright, 1992). 

5. Concluding remarks 

The most rigorous way to analyse coherence and 
correlation in scattering theory is through the use of 
density matrices. We have shown how this approach 
can be used in thermal diffuse scattering to produce 
expressions for the thermally averaged density matrix. 
The examples demonstrate that, as well as being very 
general, the formalism is also highly flexible and can 
be used to tackle questions of coherence in a variety 
of contexts. In this paper we have attempted only to 
discuss the framework of the theory. However, there 
are a number of extensions of the examples discussed 
here which will be the subject of a forthcoming paper 

(Bird & Wright, 1992). One is the extent to which 
multiple diffuse scattering preserves or destroys the  
coherence between Bloch waves found in § 3. This 
can be analysed by extending the perturbation 
expansion (13) of p to higher terms and investigating 
the effect on the off-diagonal terms. The second is to 
continue the analysis of § 4 to look at the full TDS 
contribution to a lattice image, including the effects 
of all the scattered waves and their dynamical inter- 
actions. 

This work was supported by the Science and 
Engineering Research Council. 

APPENDIX 

In this Appendix we evaluate the matrix elements of 
the thermally fluctuating potential. In both examples 
discussed in the paper the second-order expressions 
for the density-matrix elements (20) contain integrals 
of the form 

o¢ ---- ([~ d R i  d Z l f , ( R , ,  z , ) t ~ U ( R , ,  z,)] 

x[~dR2dz2f2(R2, z2)~U(R2, z2)]), (A1) 

where fl and f2 represent the functions which appear 
in (19a) and (19b). In (20) the zi and z2 integrals are 
over the thickness of the crystal, but as 8U goes to 
zero outside the crystal they can be extended to be 
over all space. Only 6U (and not f )  is thermally 
fluctuating, so it follows that the important quantity 
is [using (21)] 

(t~ U(r,)  t~U(r2)) 

=(U(rl)U(r2))-(U(r~))(U(r2)), (32)  

which can then be integrated as in (A1). We take the 
simplest case of a crystal with one atom per unit cell 
and write U(r) as a sum over atomic potentials u 
situated at the lattice sites l: 

U(r) = ~  u ( r - l - A 0 .  (A3) 
I 

Ai is the displacement of the atom at site I. It is 
convenient to rewrite (A3) in a Fourier representation 

U(r) = (2"rr) -3 ~ ~ dk exp ( ik .  r) u(k) 
I 

x exp ( - i k .  1) exp ( - i k -  Ai), (A4) 

where u(k) is the Fourier transform of u(r). We use 
the Einstein approximation for the atomic vibrations, 
in which case the motion of the atom at ! is correlated 
only with itself, and 

(AIA,,) = 2M6,.,., (A5) 

where M is the usual temperature factor and ~ is 
the Kroneker delta function. Equation (A2) then 
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becomes 

(3U(rl)3U(r2)) 

--~ (2 7T) -6 $~ dkl dk2 exp ( ikl-  rl) exp (ik2" r2) 

x U(kl)U(k2)S(kl, k2) Y~ exp [ - i (k l  + k2)" 1], 
l 

(A6) 

where the correlation function S is given by 

S(kl,  k2) = exp [ - M  (kl + k2) 2] 

- e x p  ( -Mk~)  exp ( -Mk2) .  (37) 

In both examples discussed in the paper the f func- 
tions of (A1) take the form of plane waves and so 
we write 

fl(rl) = exp ( - iq l  "rl), 
(A8) 

f2(r2) = exp (iq2" r2). 

When (A6) is substituted into (A1) we obtain 

~¢ = u(qt)u*(q2)S(qt-q2) Y exp [ i (q2-q l )"  !] (A9) 
! 

which is the basic result for the matrix elements. It 
only remains to look at the sum in (A9), which covers 
all lattice sites in the crystal. It follows that the trans- 
verse parts, QI and Q2, of ql and q2 must be equal 
to within a two-dimensional reciprocal-lattice vector, 
G. The sum in the z direction is however only over 
the finite thickness of the crystal. Provided (q2)z- 
(ql)z is small (as it is in practice) the sum can be 
replaced by an integral to yield 

(1/Iz) j dz exp [ i( q2z - qiz)Z] 
o 

= ( t~ Iz) exp [ i(q2z - q,z)t/2] 

x s in[ (q2z -q i z ) t / 2 ] / [ (q2z -q l z ) t / 2 ] ,  (A10) 

where Iz is the repeat distance in the z direction. It 
is this oscillatory thickness-dependent factor which 
controls the degree of coherence between different 
states. If ql~ = qaz, (A10) gives a contribution which 
increases linearly with t. However, if qlz and q2z are 
different the (sin x ) / x  factor in (A10) falls off with 
increasing thickness, which indicates a reduction in 
the off-diagonal elements of the density matrix and 
a correspondingly weaker coherence. 
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Abstract 

The number of orientational parameters is evalu- 
ated for a general point-symmetry operation in n 
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dimensions. When the operation contains orthog- 
onal identical crypto-components some of the 
parameters become free and this phenomenon is 
investigated. 
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